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Apollo - An instantaneous, collaborative, genome annotation editor.

The application’s technology stack includes a Grails-based Java web application with flexible database backends and
a Javascript client that runs in a web browser as a JBrowse plugin.

You can find the latest release here: https://github.com/GMOD/Apollo/releases/latest and our setup guide: http://
genomearchitect.readthedocs.io/en/latest/Setup.html

For general information on Apollo, go to: https://genomearchitect.github.io/

For more information on JBrowse, please visit: http://jbrowse.org

Note: This documentation covers release versions 2.x of Apollo. For the 1.0.4 installation please refer to the installa-
tion guide found at http://genomearchitect.readthedocs.io/en/1.0.4/

Contents:

Contents 1
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2 Contents



CHAPTER 1

Pre-requisites

1.1 Client pre-requisites

Apollo is a web-based application, so the only client side requirement is a web browser. Apollo has been tested on
Chrome, Firefox, and Safari and matches the web browser requirements for JBrowse (see jbrowse.org for details).

1.2 Server-side pre-requisites

Note: see the Apollo 2.x quick-start for the quickest way to take care of pre-requisites.

• System pre-requisites (see quick-start guide for simple setup)

– Any Unix like system (e.g., Unix, Linux, Mac OS X)

– Servlet container (must support servlet spec 3.0+) such as tomcat 7

– Java 7+ OpenJDK or Oracle should work.

– Grails (optional, but good for development). The easiest way to install is using sdkman, see Apollo 2.x
quick-start for this step)

– Ant 1.8+ (most package managers will have this)

– A database (RDMS) system. Sample configurations for PostgreSQL and MySQL are available. H2 con-
figuration does not require any manual installation.

– Basic tools like Git, Curl, a text editor, etc

• Data generation pipeline pre-requisites (for full list see http://gmod.org/wiki/JBrowse_Configuration_Guide)

– System packages

* libpng12-0 (optional, for JBrowse imagetrack)

* libpng12-dev (optional, for JBrowse imagetrack)

* zlib1g (Debian/Ubuntu)

3
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* zlib1g-dev (Debian/Ubuntu)

* zlib (RedHat/CentOS)

* zlib-devel (RedHat/CentOS)

* libexpat1-dev (Debian/Ubuntu)

* expat-dev (RedHat/CentOS)

• Perl pre-requisites:

– Apollo will automatically try to install all perl-pre-requisites

– If you are building Apollo in “release” mode, perl 5.10 or up will be required

• Sequence search (optional)

– Blat (download Linux or OSX binaries)

1.2.1 Package manager commands

To install system pre-requisites, you can try the following commands

Debian/Ubuntu

sudo apt-get install openjdk-7-jdk curl libexpat1-dev postgresql postgresql-server-dev-all tomcat7
git

CentOS/RedHat

sudo yum install postgresql postgresql-server postgresql-devel expat-devel
tomcat git curl

MacOSX/Homebrew

brew install postgresql tomcat git

4 Chapter 1. Pre-requisites
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CHAPTER 2

Quick-start Developer’s guide

Here we will introduce how to setup Apollo on your server. In general, there are two modes of deploying Apollo.

There is “development mode” where the application is launched in a temporary server (automatically) and there is
“production mode”, which will typically require an external separate database and tomcat server where you can deploy
the generated war file.

This guide will cover the “development mode” scenario which should be easy to start. To setup in a production
environment, please see the setup guide.

2.1 Java / JDK

You have to install Java and the Java Development Kit (JDK) 7 or higher to run Apollo. Both the Oracle and OpenJDK
versions have been tested.

2.2 Node.js / NPM / Bower

You will need to install node.js, which includes NPM (the node package manager) to build Apollo.

Once node.js / npm is installed, install bower using (you may need sudo):

npm install -g bower

2.3 Grails / Groovy / Gradle (optional)

Installing Grails (application framework), Groovy (development language), or Gradle (build environment) is not re-
quired (they will install themselves), but it is suggested for doing development.

This is most easily done by using SDKMAN (formerly GVM) which can automatically setup grails for you.

5
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1. curl -s http://get.sdkman.io | bash

2. sdk install grails 2.5.5

3. sdk install gradle 2.11

4. sdk install groovy

2.4 Get the code

To setup Apollo, you can download our latest release from our official releases as compressed zip or tar.gz file (link at
the bottom).

Alternatively you can check it out from git as directly as follows:

1. git clone https://github.com/GMOD/Apollo.git Apollo

2. cd Apollo

3. git checkout 2.X.Y # where X.Y is the tagged version you want from here:
https://github.com/GMOD/Apollo/tags

2.5 Verify install requirements

We can now perform a quick-start of the application in “development mode” with this command:

./apollo run-local

The jbrowse and perl pre-requisites will be installed during this step, and if there is a success, then a temporary server
will be automatically launched at http://localhost:8080/apollo.

Note: You can also supply a port number e.g. apollo run-local 8085 if there are conflicts on port 8080.

Also note: if there are any errors at this step, check the setup.log file for errors. You can refer to the troubleshooting
guide and often it just means the pre-requisites or perl modules failed.

Also also note: the “development mode” uses an in-memory H2 database for storing data by default. The setup guide
will show you how to configure custom database settings.

2.6 Setting up the application

2.6.1 Setup a production server

To setup in a production environment, please see the setup guide. To setup (as opposed to a development server as
above), you must properly configure a servlet container like Tomcat or Jetty with sufficient memory.

2.6.2 Adding data to Apollo

After we have a server setup, we will want to add a new organism to the panel. If you are a new user, you will want
to setup this data with the jbrowse pre-processing scripts. You can see the data loading guide for more details, but
essentially, you will want to load a reference genome and an annotations file at a minimum:

6 Chapter 2. Quick-start Developer’s guide
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bin/prepare-refseqs.pl --fasta yourgenome.fasta --out /opt/apollo/data

bin/flatfile-to-json.pl --gff yourannotations.gff --type mRNA \
--trackLabel AnnotationsGff --out /opt/apollo/data

2.6.3 Login to the web interface

After you access your application at http://localhost:8080/apollo/ then you will be prompted for login information

Figure 1. “Register First Admin User” screen allows you to create a new admin user.

Figure 2. Navigate to the “Organism tab” and select “Create new organism”. Then enter the new information for your
organism. Importantly, the data directory refers to a directory that has been prepared with the JBrowse data loading
scripts from the command line. See the data loading section for details.

2.6. Setting up the application 7
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Figure 3. Open up the new organism from the drop down tab on the annotator panel.

2.7 Conclusion

If you completed this setup, you can then begin adding new users and performing annotations. Please continue to
the setup guide for deploying the webapp to production or visit the troubleshooting guide if you encounter problems
during setup.

8 Chapter 2. Quick-start Developer’s guide
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CHAPTER 3

Setup guide

The quick-start guide showed how to quickly launch a temporary instance of Apollo, but deploying the application to
production normally involves some extra steps.

The general idea behind your deployment is to create a apollo-config.groovy file from some existing sample
files which have sample settings for various database engines.

3.1 Production pre-requisites

You will minimally need to have Java 7 or greater, Grails, git, ant, a servlet container e.g. tomcat7+, jetty, or resin. An
external database such as PostgreSQL or MySQL is generally used for production, but instructions for the H2 database
is also provided.

Important note: The default memory for Tomcat and Jetty is insufficient to run Apollo (and most other web apps).You
should increase the memory according to these instructions.

Other possible build settings for JBrowse (based on an Ubuntu 16 install):

sudo apt-get update && sudo apt-get install zlib1g-dev libpng-dev libgd2-noxpm-dev
→˓build-essential git python-software-properties
curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install nodejs

Note that npm (installed with nodejs) must be version 2 or better. If not installed from the above instructions, most
stable versions of node.js will supply this.

sudo npm install -g bower

Build settings for Apollo specifically. Recent versions of tomcat7 will work, though tomcat8 is preferred. If it does
not install automatically there are a number of ways to build tomcat on linux:

sudo apt-get install ant openjdk-8-jdk
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/ # or set in .bashrc / .project

9
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Download Apollo from the latest release under source-code and unzip. Test installation by running ./apollo
run-local and see that the web-server starts up on http://localhost:8080/apollo/. To setup for production continue
onto configuration below after install .

3.1.1 Database configuration

Apollo supports several database backends, and you can choose sample configurations from using H2, Postgres, or
MySQL by default.

Each has a file called sample-h2-apollo-config.groovy or sample-postgres-apollo-config.
groovy that is designed to be renamed to apollo-config.groovy before running apollo deploy. Additionally
there is a sample-docker-apollo-config.groovy which allows control of the configuration via environ-
ment variables.

Furthermore, the apollo-config.groovy has different groovy environments for test, development, and produc-
tion modes. The environment will be selected automatically selected depending on how it is run, e.g:

• apollo deploy or apollo release use the production environment (i.e. when you copy the war file
to your production server apollo run-local or apollo debug use the development environment (i.e.
when you are running it locally)

• apollo test uses the test environment (i.e. only when running unit tests)

Configure for H2:

• H2 is an embedded database engine, so no external setups are needed. Simply copy sample-h2-apollo-
config.groovy to apollo-config.groovy.

Configure for PostgreSQL:

• Create a new database with postgres and add a user for production mode. Here are a few ways to do this in
PostgreSQL.

• Copy the sample-postgres-apollo-config.groovy to apollo-config.groovy.

Configure for MySQL:

• Create a new MySQL database for production mode (i.e. run ‘‘create database ‘apollo-production‘‘‘ in the
mysql console) and copy the sample-postgres-apollo-config.groovy to apollo-config.groovy.

Configure for Docker:

• Set up and export all of the environment variables you wish to configure. At bare minimum you will likely
wish to set WEBAPOLLO_DB_USERNAME, WEBAPOLLO_DB_PASSWORD, WEBAPOLLO_DB_DRIVER,
WEBAPOLLO_DB_DIALECT, and WEBAPOLLO_DB_URI

• Create a new database in your chosen database backend and copy the sample-docker-apollo-config.groovy to
apollo-config.groovy.

• Instructions and a script for launching docker with apollo and PostgreSQL.

10 Chapter 3. Setup guide
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3.1.2 Database schema

After you startup the application, the database schema (tables, etc.) is automatically setup. You don’t have to initialize
any database schemas yourself.

3.2 Deploy the application

The apollo run-local command only launches a temporary server and should really not be used in production,
so to deploy to production, we build a new WAR file with the apollo deploy command. After you have setup
your apollo-config.groovy file, and it has the appropriate username, password, and JDBC URL in it, then we
can run the command:

./apollo deploy

This command will package the application and it will download any missing pre-requisites (jbrowse) into a WAR file
in the “target/” subfolder. After it completes, you can then copy the WAR file (e.g. apollo-2.0.4.war) from the
target folder to the web-app folder of your web container installation. If you name the file apollo.war in your
webapps folder, then you can access your app at “http://localhost:8080/apollo”

We test primarily on Apache Tomcat (7.0.62+ and 8). Make sure to set your Tomcat memory to an appropriate
size or Apollo will run slow / crash.

Alternatively, as we alluded to previously, you can also launch a temporary instance of the server which is useful for
testing

./apollo run-local 8085

This temporary server will be accessible at “http://localhost:8085/apollo”

3.2.1 Note on database settings

If you use the apollo run-local command, then the “development” section of the apollo-config.groovy is used
(or an temporary in-memory H2 database is used if no apollo-config.groovy exists).

If you use the WAR file generated by the apollo deploy command on your own webserver, then the “production”
section of the apollo-config.groovy is used.

3.3 Detailed build instructions

While the shortcut apollo deploy takes care of basic application deployment, understanding the full build process
of Apollo can help you to optimize and improve your deployed instances.

To learn more about the architecture of webapollo, view the architecture guide but the main idea here is to learn how
to use apollo release to construct a build that includes javascript minimization

3.3.1 Pre-requisites for Javascript minimization

In addition to the system pre-requisites, the javascript compilation will use nodejs, which can be installed from a
package manager on many platforms. Recommended setup for different platforms:
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sudo apt-get install nodejs
sudo yum install epel-release npm
brew install node

Install extra perl modules

Building apollo in release mode also requires some extra Perl modules, namely Text::Markdown and DateTime. One
way to install them:

bin/cpanm -l extlib DateTime Text::Markdown

3.3.2 Performing the javascript minimization

To build a Apollo release with Javascript minimization, you can use the command

./apollo release

This will compile JBrowse and Apollo javascript code into minimized files so that the number of HTTP requests that
the client needs to make are reduced.

In all other respects, apollo release is exactly the same as apollo deploy though.

3.3.3 Performing active development

To perform active development of the codebase, use

./apollo debug

This will launch a temporary instance of Apollo by running grails run-app and ant devmode at the same
time, which means that any changes to the Java files will be picked up, allowing fast iteration.

If you modify the javascript files (i.e. the client directory), you can run scripts/copy_client.sh and these
will be picked up on-the-fly too.
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CHAPTER 4

Apollo Configuration

Apollo includes some basic configuration parameters that are specified in configuration files. The most important
parameters are the database parameters in order to get Apollo up and running. Other options besides the database
parameters can be configured via the config files, but note that many parameters can also be configured via the web
interface.

Note: Configuration options may change over time, as more configuration items are integrated into the web interface.

4.1 Main configuration

The main configuration settings for Apollo are stored in grails-app/conf/Config.groovy, but you can over-
ride settings in your apollo-config.groovy file (i.e. the same file that contains your database parameters). Here
are the defaults that are defined in the Config.groovy file:

// default apollo settings
apollo {

default_minimum_intron_size = 1
history_size = 0
overlapper_class = "org.bbop.apollo.sequence.OrfOverlapper"
track_name_comparator = "/config/track_name_comparator.js"
use_cds_for_new_transcripts = true
user_pure_memory_store = true
translation_table = "/config/translation_tables/ncbi_1_translation_table.txt"
is_partial_translation_allowed = false // unused so far
get_translation_code = 1
sequence_search_tools = [
blat_nuc: [

search_exe: "/usr/local/bin/blat",
search_class: "org.bbop.apollo.sequence.search.blat.

→˓BlatCommandLineNucleotideToNucleotide",
name: "Blat nucleotide",
params: ""

],
blat_prot: [

13
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search_exe: "/usr/local/bin/blat",
search_class: "org.bbop.apollo.sequence.search.blat.

→˓BlatCommandLineProteinToNucleotide",
name: "Blat protein",
params: ""
tmp_dir: "/opt/apollo/tmp" //optional param, uses system tmp dir by default

]
]

splice_donor_sites = [ "GT" ]
splice_acceptor_sites = [ "AG"]
gff3.source= "." bootstrap = false

info_editor = {
feature_types = "default"
attributes = true
dbxrefs = true
pubmed_ids = true
go_ids = true
comments = true

}
}

These settings are essentially the same familiar parameters from a config.xml file from previous Apollo ver-
sions. The defaults are generally sufficient, but as noted above, you can override any particular parameter in your
apollo-config.groovy file, e.g. you can add override configuration any given parameter as follows:

grails {
apollo.get_translation_code = 1
apollo {
use_cds_for_new_transcripts = true
default_minimum_intron_size = 1
get_translation_code = 1 // identical to the dot notation

}
}

4.2 JBrowse Plugins

You can add / remove jbrowse plugins by copying a jbrowse section into your apollo-config.groovy.

There are two sections, plugins and main, which specifies the jbrowse version.

The main section can either contain a git block or a url block, both of which require url. If a git block a tag or
branch can be specified.

In the plugins section, options are included (part of the JBrowse release), url (requiring a url parameter), or
git, which can include a tag or branch as above.

Options for alwaysRecheck and alwaysRepull always check the branch and tag and always pull respectiviely.

Warning: The NeatHTMLFeatures and NeatCanvasFeatures plugins work very well in JBrowse instances.
We are still in the process of testing and improving their performance in combination with the Apollo plugin. Until
we finalize this process, we strongly advise caution if enabling them for use in your Apollo instances.
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jbrowse {
git {

url= "https://github.com/GMOD/jbrowse"
// tag = "1.12.1-release"

branch = "master"
alwaysPull = true
alwaysRecheck = true

}
// url {
// // always use dev for apollo
// url = "http://jbrowse.org/wordpress/wp-content/plugins/download-monitor/
→˓download.php?id=102"
// type ="zip"
// fileName = "JBrowse-1.12.0-dev"
// }

plugins {
WebApollo{

included = true
}
NeatHTMLFeatures{

included = true
}
NeatCanvasFeatures{

included = true
}
RegexSequenceSearch{

included = true
}
HideTrackLabels{

included = true
}

// MyVariantInfo {
// git = 'https://github.com/GMOD/myvariantviewer'
// branch = 'master'
// alwaysRecheck = "true"
// alwaysPull = "true"
// }
// SashimiPlot {
// git = 'https://github.com/cmdcolin/sashimiplot'
// branch = 'master'
// alwaysPull = "true"
// }

}
}

4.3 Translation tables

The default translation table is 1

To use one of the others set the number in the apollo-config.groovy file as:

apollo {
...

get_translation_code = "11"
}
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These correspond to the NCBI translation tables.

To add a custom translation table, you can add it to to the web-app/translation_tables directory as:

web-app/translation_tables/ncbi_customname_translation_table.txt

and specify the customname as:

In apollo-config.groovy:

apollo {
...

get_translation_code = "customname"
}

4.4 Logging configuration

To over-ride the default logging, you can look at the logging configurations from Config.groovy and override or modify
them in apollo-config.groovy.

log4j.main = {
error 'org.codehaus.groovy.grails.web.servlet', // controllers

'org.codehaus.groovy.grails.web.pages', // GSP
'org.codehaus.groovy.grails.web.sitemesh', // layouts
...

warn 'grails.app'
}

Additional links for log4j:

• Advanced log4j configuration: http://blog.andresteingress.com/2012/03/22/grails-adding-more-than-one-log4j-
configurations/

• Grails log4j guide: http://grails.github.io/grails-doc/2.4.x/guide/single.html#logging

4.5 Canned Elements

Canned comments, canned keys (tags), and canned values are configured using the Admin tab from the Annotator
Panel on the web interface; these can no longer be created or edited using the configuration files. For more details on
how to create and edit Canned Elements see Canned Elements.

View your instances page for more details. For example

• http://localhost:8080/apollo/cannedComment/

• http://localhost:8080/apollo/cannedKey/

• http://localhost:8080/apollo/cannedValue/

4.6 Search tools

Apollo can be configured to work with various sequence search tools. UCSC’s BLAT tool is configured by default and
you can customize it as follows:

16 Chapter 4. Apollo Configuration

https://github.com/GMOD/Apollo/blob/master/grails-app/conf/Config.groovy
CannedElements.html


Apollo Documentation, Release 2.0.6

sequence_search_tools = [
blat_nuc: [
search_exe: "/usr/local/bin/blat",
search_class: "org.bbop.apollo.sequence.search.blat.

→˓BlatCommandLineNucleotideToNucleotide",
name: "Blat nucleotide",
params: ""

],
blat_prot: [
search_exe: "/usr/local/bin/blat",
search_class: "org.bbop.apollo.sequence.search.blat.

→˓BlatCommandLineProteinToNucleotide",
name: "Blat protein",
params: "",
tmp_dir: "/opt/apollo/tmp" //optional, uses system tmp dir by default

]
your_custom_search_tool: [
search_exe: "/usr/local/customtool",
search_class: "org.your.custom.Class",
name: "Custom search"

]
]

When you setup your organism in the web interface, you can then enter the location of the sequence search database
for BLAT.

Note: If the BLAT binaries reside elsewhere on your system, edit the search_exe location in the config to point to your
BLAT executable.

4.7 Data adapters

Data adapters for Apollo provide the methods for exporting annotation data from the application. By de-
fault, GFF3 and FASTA adapters are supplied. They are configured to query your IOService URL e.g.
http://localhost:8080/apollo/IOService with the customizable query

data_adapters = [[
permission: 1,
key: "GFF3",
data_adapters: [[
permission: 1,
key: "Only GFF3",
options: "output=file&format=gzip&type=GFF3&exportGff3Fasta=false"

],
[
permission: 1,
key: "GFF3 with FASTA",
options: "output=file&format=gzip&type=GFF3&exportGff3Fasta=true"

]]
],
[

permission: 1,
key : "FASTA",
data_adapters :[[
permission : 1,
key : "peptide",
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options : "output=file&format=gzip&type=FASTA&seqType=peptide"
],
[
permission : 1,
key : "cDNA",
options : "output=file&format=gzip&type=FASTA&seqType=cdna"

],
[
permission : 1,
key : "CDS",
options : "output=file&format=gzip&type=FASTA&seqType=cds"

]]
]]

4.7.1 Default data adapter options

The options available for the data adapters are configured as follows

• type: GFF3 or FASTA

• output: can be file or text. file exports to a file and provides a UUID link for downloads, text just outputs
to stream.

• format: can by gzip or plain. gzip offers gzip compression of the exports, which is the default.

• exportSequence: true or false, which is used to include FASTA sequence at the bottom of a GFF3 export

4.8 Supported annotation types

Many configurations will require you to define which annotation types the configuration will apply to. Apollo supports
the following “higher level” types (from the Sequence Ontology):

• sequence:gene

• sequence:pseudogene

• sequence:transcript

• sequence:mRNA

• sequence:tRNA

• sequence:snRNA

• sequence:snoRNA

• sequence:ncRNA

• sequence:rRNA

• sequence:miRNA

• sequence:repeat_region

• sequence:transposable_element
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4.9 Apache / Nginx configuration

Oftentimes, admins will put use Apache or Nginx as a reverse proxy so that the requests to a main server can be
forwarded to the tomcat server. This setup is not necessary, but it is a very standard configuration.

Note that we use the SockJS library, which will downgrade to long-polling if websockets are not available, but since
websockets are preferable, it helps to take some extra steps to ensure that the websocket calls are proxied or forwarded
in some way too. If you are using tomcat 7, please make sure to use the most recent stable version, which supports
web sockets by default. Using older versions (e.g. 7.0.26) websockets may not be included by default and you will
need to include an additional .jar file.

4.9.1 Apache Proxy

The most simple setup on apache is as follows.. Here is the most basic configuration for a reverse proxy:

ProxyPass /apollo http://localhost:8080/apollo
ProxyPassReverse /apollo http://localhost:8080/apollo

Note: that a reverse proxy does not use ProxyRequests On (which turns on forward proxying, which is dangerous)

Also note: This setup will use downgrade to use AJAX long-polling without the websocket proxy being configured.

To setup the proxy for websockets, you can use mod_proxy_wstunnel, first load the module

LoadModule proxy_wstunnel_module libexec/apache2/mod_proxy_wstunnel.so

Then add extra ProxyPass calls for the websocket “endpoint” called /apollo/stomp

ProxyPass /apollo/stomp ws://localhost:8080/apollo/stomp
ProxyPassReverse /apollo/stomp ws://localhost:8080/apollo/stomp

Debugging proxy issues

Note: if your webapp is accessible but it doesn’t seem like you can login, you may need to customize the ProxyPass-
ReverseCookiePath

For example, if you proxied to a different path, you might have something like this

ProxyPass /testing http://localhost:8080
ProxyPassReverse /testing http://localhost:8080
ProxyPassReverseCookiePath / /testing

Then your application might be accessible from http://localhost/testing/apollo

4.9.2 Nginx Proxy (from version 1.4 on)

Your setup may vary, but setting the upgrade headers can be used for the websocket configuration
http://nginx.org/en/docs/http/websocket.html

map $http_upgrade $connection_upgrade {
default upgrade;
'' close;

}
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server {
# Main
listen 80; server_name myserver;

# http://nginx.org/en/docs/http/websocket.html
location /ApolloSever {

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_pass http://127.0.0.1:8080;

}
}

4.10 Upgrading existing instances

There are several scripts for migrating from older instances. See the migration guide for details. Particular notes:

Note: Apollo does not require using the add-webapollo-plugin.pl because the plugin is loaded implicitly by
including the client/apollo/json/annot.json file at run time.

4.10.1 Upgrading existing JBrowse data stores

It is not necessary to change your existing JBrowse data directories to use Apollo 2.x, you can just point to existing
data directories from your previous instances.

More information about JBrowse can also be found in their FAQ.

4.10.2 Adding custom CSS for track styling for JBrowse

There are a variety of different ways to include new CSS into the browser, but the easiest might be the following

Add the following statement to your trackList.json:

"css" : "data/yourfile.css"

Then just place your CSS file in your organism’s data directory.

Adding custom CSS globally for JBrowse

If you want to add CSS that is used globally for JBrowse, you can edit the CSS in the client/apollo/css folder, but since
you need to re-deploy the app every time for updates, it is easier to just edit the data directories for your organisms
(you do not need to re-deploy the app when you are editing organism specific data, since this is outside of the webapp
directory and is not deployed with the WAR file)

4.10.3 Adding custom CSS globally for the GWT app

If you want to style the GWT sidebar, generally the bootstrap theme is used but extra CSS is also included from
web-app/annotator/theme.css which overrides the bootstrap theme
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4.10.4 Adding / using proxies

If you are https, or choose to use separate services rather than the default provided, you can setup a pass-through proxy
or modify a particular URL.

This service is only available to logged-in users.

The internal proxy URL is:

<apollo url>/proxy/request/<encoded_proxy_url>/

For example if your URL the URL we want to proxy:

http://golr.geneontology.org/solr/select

encoded:

http%3A%2F%2Fgolr.geneontology.org%2Fsolr%2Fselect

If you user is logged-in and you pass in:

http://localhost/apollo/proxy/request/http%3A%2F%2Fgolr.geneontology.
org%2Fsolr%2Fselect?testkey=asdf&anotherkey=zxcv

This will get proxied to:

http://golr.geneontology.org/solr/select?testkey=asdf&anotherkey=zxcv

If you choose to use another proxy service, you can go to the “Proxy” page (as administrator). Internally used proxies
are provided by default. The order the final URL is chosen in is ‘active’ and then ‘fallbackOrder’.

4.11 Register admin in configuration

If you want to register your admin user in the configuration, you can add a section to your apollo-config.
groovy like:

apollo{
// other stuff

admin{
username = "super@duperadmin.com"
password = System.getenv("APOLLO_ADMIN_PASSWORD")?:"demo"
firstName = "Super"
lastName = "Admin"

}
}

It should only add the user a single time. User details can be retrieved from passed in text or from the environment
depending on user preference.

Admin users will be added on system startup. Duplicate additions will be ignored.

4.12 Other authentication strategies

By default Apollo uses a username / password to authenticate users. However, additional strategies may be used.

To configure them, add them to the apollo-config.groovy and set active to true for the ones you want to use to
authenticate.
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apollo{
// other stuff
authentications = [

["name":"Username Password Authenticator",
"className":"usernamePasswordAuthenticatorService",
"active":true,
]
,
["name":"Remote User Authenticator",
"className":"remoteUserAuthenticatorService",
"active":false,
]

]
}

4.13 URL modifications

You should be able to pass in most JBrowse URL modifications to the loadLink URL.

You should use tracklist=1 to force showing the native tracklist (or use the checkbox in the Track Tab in the
Annotator Panel).

Use openAnnotatorPanel=0 to close the Annotator Panel explicitly on startup.

4.14 Phone Home

In order to determine our usage and the current versions of Apollo being used (which helps us to provide Apollo for
free), the server and the client will phone home and to google analytics.

To turn off the server phone home set the configuration this way.

apollo.phone.phoneHome = false

To add your own google analytics code set the code up this way:

google_analytics = ["UA-62921593-1","Your Google Analytics ID"]

If you don’t want any reporting set:

google_analytics = []

22 Chapter 4. Apollo Configuration



CHAPTER 5

Chado Export Configuration

Following are the steps for setting up a Chado data source that is compatible with Apollo Chado Export.

5.1 Create a Chado database

First create a database in PostgreSQL for Chado.

Note: Initial testing has only been done on PostgreSQL.

Default name is apollo-chado and apollo-production-chado for development and production environ-
ment, respectively.

5.2 Create a Chado user

Now, create a database user that has all access privileges to the newly created Chado database.

5.3 Load Chado schema and ontologies

Apollo assumes that the Chado database has Chado schema v1.2 or greater and has the following ontologies loaded:

1. Relations Ontology

2. Sequence Ontology

3. Gene Ontology

The quickest and easiest way to do this is to use prebuilt Chado schemas. Apollo provides a prebuilt Chado schema
with the necessary ontologies. (thanks to Eric Rasche at Center for Phage Technology, TAMU)

Users can load this prebuilt Chado schema as follows:
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scripts/load_chado_schema.sh -u <USER> -d <CHADO_DATABASE> -h <HOST> -p <PORT> -s
→˓<CHADO_SCHEMA_SQL>

If there is already an existing database with the same name and if you would like to dump and create a clean database:

scripts/load_chado_schema.sh -u <USER> -d <CHADO_DATABASE> -h <HOST> -p <PORT> -s
→˓<CHADO_SCHEMA_SQL> -r

The ‘-r’ flag tells the script to perform a pg_dump if <CHADO_DATABASE> exists.

e.g.,

scripts/load_chado_schema.sh -u postgres -d apollo-chado -h localhost -p 5432 -r -s
→˓chado-schema-with-ontologies.sql.gz

The file chado-schema-with-ontologies.sql.gz can be found in Apollo/scripts/ directory.

The load_chado_schema.sh script creates log files which can be inspected to see if loading the schema was
successful.

Note that you will also need to do this for your testing and production instances, as well.

5.4 Configure data sources

In apollo-config.groovy, uncomment the configuration for datasource_chado and specify the proper
database name, database user name and database user password.

5.5 Export via UI

Users can export existing annotations to the Chado database via the Annotator Panel -> Ref Sequence -> Export.

5.6 Export via web services

Users can also leverage the Apollo web services API to export annotations to Chado. As a demonstration, a sample
script, export_annotations_to_chado.groovy is provided.

Usage for the script:

export_annotations_to_chado.groovy -organism ORGANISM_COMMON_NAME -username APOLLO_
→˓USERNAME -password APOLLO_PASSWORD -url http://localhost:8080/apollo
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CHAPTER 6

Data generation pipeline

The data generation pipeline is based on the typical jbrowse commands such as prepare-refseqs.pl and flatfile-to-
json.pl, and these scripts are automatically copied to a local bin/ directory when you run the setup scripts (e.g. apollo
run-local or apollo deploy or install_jbrowse.sh).

If you don’t see a bin/ subdirectory containing these scripts after running the setup, check setup.log and check the
troubleshooting guide for additional tips or feel free to post the error and setup.log on GitHub or the mailing list.

6.1 prepare-refseqs.pl

The first step to setup the genome browser is to load the reference genome data. We’ll use the prepare-refseqs.
pl script to output to the data directory.

bin/prepare-refseqs.pl --fasta pyu_data/scf1117875582023.fa --out /opt/apollo/data

Note: the output directory is used later when we load the organism into the browser with the “Create organism” form

6.2 flatfile-to-json.pl

The flatfile-to-json.pl script can be used to load GFF3 files and you can customize the feature types. Here, we’ll start
off by loading data from the MAKER GFF for the Pythium ultimum data. The simplest loading command specifies a
–trackLabel, the –type of feature to load, the –gff file and the –out directory.

bin/flatfile-to-json.pl --gff pyu_data/scf1117875582023.gff --type mRNA \
--trackLabel MAKER --out /opt/apollo/data

Note: you can also use the command bin/maker2jbrowse for loading the MAKER data.

Also see the section Customizing features section for more information on customizing the CSS styles of the Apollo
features.
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Note: Apollo uses features that are loaded at the “transcript” level. If your GFF3 has “gene” features with “tran-
script”/”mRNA” child features, make sure that you use the argument –type mRNA or –type transcript.

6.3 generate-names.pl

Once data tracks have been created, you can generate a searchable index of names using the generate-names.pl script:

bin/generate-names.pl --verbose --out /opt/apollo/data

This is optional but useful step to index of names and features and refseq names. If you have some tracks that have
millions of features, consider only indexing select tracks with the –tracks argument or disabling autocomplete with
--completionLimit 0.

6.4 add-bam-track.pl

Apollo natively supports BAM files and the file can be read (in chunks) directly from the server with no preprocessing.

To add a BAM track, copy the .bam and .bam.bai files to your data directory, and then use the add-bam-track.pl to add
the file to the tracklist.

mkdir /opt/apollo/data/bam
cp pyu_data/simulated-sorted.bam /opt/apollo/data/bam
cp pyu_data/simulated-sorted.bam.bai /opt/apollo/data/bam
bin/add-bam-track.pl --bam_url bam/simulated-sorted.bam \

--label simulated_bam --key "simulated BAM" -i /opt/apollo/data/trackList.json

Note: the bam_url parameter is a URL that is relative to the data directory. It is not a filepath! Also, the .bai will
automatically be located if it is simply the .bam with .bai appended to it.

6.5 add-bw-track.pl

Apollo also has native support for BigWig files (.bw), so no extra processing of these files is required either.

To use this, copy the BigWig data into the jbrowse data directory and then use the add-bw-track.pl to add the file to
the tracklist.

mkdir /opt/apollo/data/bigwig
cp pyu_data/*.bw /opt/apollo/data/bigwig
bin/add-bw-track.pl --bw_url bigwig/simulated-sorted.coverage.bw \

--label simulated_bw --key "simulated BigWig"

Note: the bw_url parameter is a URL that is relative to the data directory. It is not a filepath!

6.6 Customizing different annotation types (advanced)

To change how the different annotation types look in the “User-created annotation” track, you’ll need to update the
mapping of the annotation type to the appropriate CSS class. This data resides in client/apollo/json/annot.
json, which is a file containing Apollo tracks that is loaded by default. You’ll need to modify the JSON entry whose
label is Annotations. Of particular interest is the alternateClasses element. Let’s look at that default
element:
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"alternateClasses": {
"pseudogene" : {

"className" : "light-purple-80pct",
"renderClassName" : "gray-center-30pct"

},
"tRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"snRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"snoRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"ncRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"miRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"rRNA" : {

"className" : "brightgreen-80pct",
"renderClassName" : "gray-center-30pct"

},
"repeat_region" : {

"className" : "magenta-80pct"
},
"transposable_element" : {

"className" : "blue-ibeam",
"renderClassName" : "blue-ibeam-render"

}
}

For each annotation type, you can override the default class mapping for both className and renderClassName
to use another CSS class. Check out the Customizing features section for more information on customizing the CSS
classes.

6.7 Customizing features

The visual appearance of biological features in Apollo (and JBrowse) is handled by CSS stylesheets with HTMLFea-
tures tracks. Every feature and subfeature is given a default CSS “class” that matches a default CSS style in a
CSS stylesheet. These styles are are defined in client/apollo/css/track_styles.css and client/
apollo/css/webapollo_track_styles.css. Additional styles are also defined in these files, and can be
used by explicitly specifying them in the –className, –subfeatureClasses, –renderClassname, or –arrowheadClass
parameters to flatfile-to-json.pl (see data loading section).

Apollo differs from JBrowse in some of it’s styling, largely in order to help with feature selection, edge-matching,
and dragging. Apollo by default uses invisible container elements (with style class names like “container-16px”) for
features that have children, so that the children are fully contained within the parent feature. This is paired with
another styled element that gets rendered within the feature but underneath the subfeatures, and is specified by the
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--renderClassname argument to flatfile-to-json.pl. Exons are also by default treated as special invis-
ible containers, which hold styled elements for UTRs and CDS.

It is relatively easy to add other stylesheets that have custom style classes that can be used as parameters to
flatfile-to-json.pl. For example, you can create /opt/apollo/data/custom_track_styles.
css which contains two new styles:

.gold-90pct,

.plus-gold-90pct,

.minus-gold-90pct {
background-color: gold;
height: 90%;
top: 5%;
border: 1px solid gray;

}

.dimgold-60pct,

.plus-dimgold-60pct,

.minus-dimgold-60pct {
background-color: #B39700;
height: 60%;
top: 20%;

}

In this example, two subfeature styles are defined, and the top property is being set to (100%-height)/2 to assure that
the subfeatures are centered vertically within their parent feature. When defining new styles for features, it is important
to specify rules that apply to plus-stylename and minus-stylename in addition to stylename, as Apollo adds the “plus-”
or “minus-” to the class of the feature if the the feature has a strand orientation.

You need to tell Apollo where to find these styles by modifying the JBrowse config or the plugin config, e.g. by adding
this to the trackList.json

"css" : "data/custom_track_styles.css"

Then you may use these new styles using –subfeatureClasses, which uses the specified CSS classes for your features
in the genome browser, for example:

bin/flatfile-to-json.pl --gff MyFile.gff \
--type mRNA --trackLabel MyTrack \
--subfeatureClasses '{"CDS":"gold-90pct","UTR": "dimgold-60pct"}'

6.8 Bulk loading annotations to the user annotation track

6.8.1 GFF3

You can use the tools/data/add_transcripts_from_gff3_to_annotations.pl script to bulk load
GFF3 files with transcripts to the user annotation track. Let’s say we want to load our maker.gff transcripts.

tools/data/add_transcripts_from_gff3_to_annotations.pl \
-U localhost:8080/Apollo -u web_apollo_admin -p web_apollo_admin \
-i scf1117875582023.gff -t mRNA -o "name of organism"

The default options should be able to handle most GFF3 files that contain genes, transcripts, and exons.

You can still use this script even if the GFF3 file that you are loading does not contain transcripts and exon types.
Let’s say we want to load match and match_part features as transcripts and exons respectively. We’ll use the
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blastn.gff file as an example.

tools/data/add_transcripts_from_gff3_to_annotations.pl \
-U localhost:8080/Apollo -u web_apollo_admin -p web_apollo_admin \
-i cf1117875582023.gff -t match -e match_part -o "name of organism"

You can view the add_transcripts_from_gff3_to_annotations.pl help (-h) option for all available options.

Note: Apollo makes a clear distinction between a transcript and an mRNA. Genes that have mRNA as its child feature
are treated as protein coding annotations and Genes that have transcript as its child feature are treated as non-coding
annotations, specifically a pseudogene.

If you would like to look at a compatible representative GFF3, export annotations from Apollo via GFF3 export.

6.9 Disable draggable

Apollo has a number of specific track config parameters

overrideDraggable (boolean)
determines whether to transform the alignments tracks to draggable alignments

overridePlugins (boolean)
determines whether to transform alignments and sequence tracks

These can be specified on a specific track or in a global config.
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CHAPTER 7

Troubleshooting guide

7.1 Tomcat memory

Typically, the default memory allowance for the Java Virtual Machine (JVM) is too low. The memory requirements
for Web Apollo will depend on many variables, but in general, we recommend at least 1g for the heap size and 256m
for the PermGen size as a starting point.

7.1.1 Suggested Tomcat memory settings

export CATALINA_OPTS="-Xms512m -Xmx1g \
-XX:+CMSClassUnloadingEnabled \
-XX:+CMSPermGenSweepingEnabled \
-XX:+UseConcMarkSweepGC \
-XX:MaxPermSize=256m"

In cases where the assembled genome is highly fragmented, additional tuning of memory requirements and garbage
collection will be necessary to maintain the system stable. Below is an example from a research group that maintains
over 40 Apollo instances with assemblies that range from 1,000 to 150,000 scaffolds (reference sequences):

export CATALINA_OPTS="-Xmx12288m -Xms8192m \
-XX:PermSize=256m \
-XX:MaxPermSize=1024m \
-XX:ReservedCodeCacheSize=64m \
-XX:+UseG1GC \
-XX:+CMSClassUnloadingEnabled \
-Xloggc:$CATALINA_HOME/logs/gc.log \
-XX:+PrintHeapAtGC \
-XX:+PrintGCDetails \
-XX:+PrintGCTimeStamps"

To change your settings, you can usually edit the setenv.sh script in $TOMCAT_BIN_DIR/setenv.sh where
$TOMCAT_BIN_DIR is the directory where the Tomcat binaries reside. It is possible that this file doesn’t exist
by default, but it will be picked up when Tomcat restarts. Make sure that tomcat can read the file.
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In most cases, creating the setenv.sh should be sufficient but you may have to edit a catalina.sh or another file directly
depending on your system and tomcat setup. For example, on Ubuntu, the file /etc/default/tomcat7 often contains these
settings.

7.1.2 Confirm your settings

Your CATALINA_OPTS settings from setenv.sh can be confirmed with a tool like jvisualvm or via the command line
with the ps tool. e.g. ps -ef | grep java should yield something like the following allowing you to confirm
that your memory settings have been picked up.

root 9848 1 0 Oct22 ? 00:36:44 /usr/lib/jvm/java-7-openjdk-amd64/bin/
→˓java -Djava.util.logging.config.file=/usr/local/tomcat/current/conf/logging.
→˓properties -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Xms1g
→˓-Xmx2g -XX:+CMSClassUnloadingEnabled -XX:+CMSPermGenSweepingEnabled -
→˓XX:+UseConcMarkSweepGC -XX:MaxPermSize=512m -Dj

7.1.3 Re-install after changing settings

If you start seeing memory leaks (java.lang.OutOfMemoryError: Java heap space) after doing an
update, you might try re-installing, as the live re-deploy itself can cause memory leaks or an inconsistent software
state.

If you have named your web application named Apollo.war then you can remove all of these files from your
webapps directory and re-deploy.

• Run apollo deploy (or apollo release for javascript-minimization)

• Undeploy any existing Apollo instances

• Stop tomcat

• Copy the war file to the webapps folder

• Start tomcat

7.2 Tomcat permissions

Preferably, when running Apollo or any webserver, you should not run Tomcat as root. Therefore, when deploying
your war file to tomcat or another web application server, you may need to tune your file permissions to make sure
Tomcat is able to access your files.

On many production systems, tomcat will typically belong to a user and group called something like ‘tomcat’. Make
sure that the ‘tomcat’ user can read your “webapps” directory (where you placed your war file) and write into the
annotations and any other relevant directory (e.g. tomcat/logs). As such, it is sometimes helpful to add the user you
logged-in as to the same group as your tomcat user and set group write permissions for both.

Consider using a package manager to install Tomcat so that proper security settings are installed, or to use the jsvc
http://tomcat.apache.org/tomcat-7.0-doc/security-howto.html#Non-Tomcat_settings
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7.3 Errors with JBrowse

7.3.1 JBrowse tools don’t show up in bin directory (or install at all) after install or
typing install_jbrowse.sh

If the bin directory with JBrowse tools doesn’t show up after calling install_jbrowse.sh JBrowse is having
trouble installing itself for a few possible reasons. If these do not work, please observe the JBrowse troubleshooting
and JBrowse install pages, as well and the setup.log file created during the installation process.

cpanm or other components are not installed

Make sure the appropriate JBrowse libraries are installed on your system.

If you see chmod: cannot access `web-app/jbrowse/bin/cpanm': No such file or
directory make sure to install cpanm.

Git tool is too old

Git expects to clone a single branch which is supported in git 1.7.10 and greater. The output when that fails looks
something like this:

Buildfile: build.xml

copy.apollo.plugin.webapp:

setup-jbrowse:

git.clone:
[exec] Result: 129

The solution is to upgrade git to 1.7.10 or greater or remove the line with the --single-branch option in build.
xml.

Accessing git behind a firewall.

If you are behind a firewall, checking out code using the git:// protocol may not be allowed, but that is the default.
The output will look something like this:

setup-jbrowse:

git.clone:
[exec] Submodule 'src/FileSaver' (git://github.com/dkasenberg/FileSaver.js.git)

→˓registered for path 'src/FileSaver'
[exec] Submodule 'src/dbind' (git://github.com/rbuels/dbind.git) registered for

→˓path 'src/dbind'
. . . .
[exec] Submodule 'src/xstyle' (git://github.com/kriszyp/xstyle.git) registered

→˓for path 'src/xstyle'
[exec] Result: 1

with possibly more output below.

Type:
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git config --global url."https://".insteadOf git://

in the command-line and then re-install using ./apollo clean-all ./apollo run-local (or deploy or
release).

7.3.2 e.g. “Can’t locate Hash/Merge.pm in @INC” or “Can’t locate JBlibs.pm in
@INC”

If you are trying to run the jbrowse binaries but get these sorts of errors, try running install_jbrowse.sh which
will initialize as many pre-requisites as possible including JBLibs and other JBrowse dependencies.

7.3.3 Rebuilding JBrowse

You can manually clear jbrowse files from web-app/jbrowse and re-run apollo deploy to rebuild JBrowse.

7.3.4 RequestError: Unable to load ... Apollo2/jbrowse/data/trackList.json status:
500

Apollo2 does fairly strict JSON validation so make sure your trackList.json file is valid JSON

If you still get this error after validating please forward the issue to our github issue tracker.

7.4 Complaints about 8080 being in use

Please check that you don’t already have a tomcat running netstat -tan | grep 8080. Sometimes tomcat
does not exit properly. ps -ef | grep java and then kill -9 the offending processing.

Note that you can also configure tomcat to run on different ports, or you can launch a temporary instance of apollo
with apollo run-local 8085 for example to avoid the port conflict.

7.5 Unable to open the h2 / default database for writing

If you receive an error similar to this:

SEVERE: Unable to create initial connections of pool.
org.h2.jdbc.JdbcSQLException: Error opening database:

"Could not save properties /var/lib/tomcat7/prodDb.lock.db" [8000-176]

Then this is due to the production server trying to write an h2 instance in an area it doesn’t have permissions to. If you
use H2 (which is great for testing or single-user user, but not for full-blown production) make sure that:

You can modify the specified data directory for the H2 database in the apollo-config.groovy. For example, using the
/tmp/ directory, or some other directory:

url = "jdbc:h2:/tmp/prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE"

This will write a H2 db file to /tmp/prodDB.db. If you don’t specify an absolute path it will try to write in the
same directory that tomcat is running in e.g., /var/lib/tomcat7/ which can have permission issues.

More detail on database configuration when specifying the apollo-config.groovy file is available in the setup
guide.
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7.6 Grails cache errors

In some instances you can’t write to the default cache location on disk. Part of an example config log:

2015-07-03 14:37:39,675 [main] ERROR context.GrailsContextLoaderListener - Error
→˓initializing the application: null
java.lang.NullPointerException

at grails.plugin.cache.ehcache.GrailsEhCacheManagerFactoryBean
→˓$ReloadableCacheManager.rebuild(GrailsEhCacheManagerFactoryBean.java:171)

at grails.plugin.cache.ehcache.EhcacheConfigLoader.reload(EhcacheConfigLoader.
→˓groovy:63)

at grails.plugin.cache.ConfigLoader.reload(ConfigLoader.groovy:42)

There are several solutions to this, but all involve updating the apollo-config.groovy file to override the
caching defined in the Config.groovy.

7.6.1 Disabling the cache:

grails.cache.config = {
cache {

enabled = false
name 'globalcache'

}
}

This can also be done by removing the plugin. In grails-app/conf/BuildConfig remove / comment out the
line and re-building:

compile ':cache-ehcache:1.0.5'

7.6.2 Disallow writing overflow to disk

Can be used for small instances

grails.cache.config = {
// avoid ehcache naming conflict to run multiple WA instances
provider {

name "ehcache-apollo-"+(new Date().format("yyyyMMddHHmmss"))
}
cache {

enabled = true
name 'globalcache'
eternal false
overflowToDisk false // THIS IS THE IMPORTANT LINE
maxElementsInMemory 100000

}
}

7.6.3 Specify the overflow directory

Best for high load servers, which will need the cache. Make sure your tomcat / web-server user can write to that
directory:
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// copy from Config.groovy except where noted
grails.cache.config = {
...

cache {
...

maxElementsOnDisk 10000000
// this is the important part, below!
diskStore{

path '/opt/apollo/cache-directory'
}

}
...

}

Information on the grails ehcache plugin (see “Overriding values”) and ehcache itself.

7.7 Mysql invalid TimeStamp error

For certain version of MySQL we might get errors of this nature:

SQLException occurred when processing request: [GET] /apollo/annotator/getAppState Value ‘0000-00-
00 00:00:00’ can not be represented as java.sql.Timestamp. Stacktrace follows: java.sql.SQLException:
Value ‘0000-00-00 00:00:00’ can not be represented as java.sql.Timestamp

The fix is to set the zeroDateTimeBehavior=convertToNull to the url connect screen. Originally identified
here. Here is an example URL:

jdbc:mysql://localhost/apollo_production?zeroDateTimeBehavior=convertToNull&
→˓autoReconnect=true&characterEncoding=UTF-8&characterSetResults=UTF-8
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CHAPTER 8

Migration guide

This guide explains how to prepare your Apollo 2.x instance, and to migrate data from previous Web Apollo versions
into 2.0.

In all cases you will need to follow the guide for setting up your 2.x instance.

8.1 Migration from Evaluation to Production:

If you are running your evaluation/development version using ./apollo run-local when you setup your pro-
duction instance, any prior annotations will use a separate database.

If you are using the same production instance you can use scripts to delete all annotations and preferences:

scripts/delete_all_features.sh

or just the annotations:

scripts/delete_only_features.sh

If you want to start from scratch (including reloading organisms and users), you can just drop the database (when the
server is not running) and the proper tables will be recreated on startup.

8.2 Migration from 2.0.X to 2.0.Y on production:

8.2.1 Installation from a downloaded release

• Download the desired Apollo release from the bottom of each release. Official releases will be tagged as “Re-
lease” and have a green label.

• Expand the archive.

• Copy your existing apollo-config.groovy file into the directory.

• Backup your database (to be safe).
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• Create a new war file as below: ./apollo deploy.

• Turn off tomcat and remove the old apollo directory in the webapps folder.

• Copy in new .war file with the same name.

• Restart tomcat and you are ready to go.

8.2.2 Installation from a checked out github

If you want bleeding and only moderately tested code (not recommended unless you feel you know what you’re doing),
you can clone Apollo directly from our source page https://github.com/GMOD/Apollo/

Any upgrading can be taken care of during a pull. Please note that as we sometimes change the version of JBrowse,
so you should do:

./apollo clean-all

before building a target for production.

You can the follow the directions for deploying a downloaded release, above.

8.3 Migration from 1.0 to 2.0:

We provide examples in the form of [migration scripts](https://github.com/gmod/apollo/tree/master/docs/web_services/
examples) in the docs/web_services/examples directory. These tools are also described in the command line tools
section.

We have written many of the command line tools examples using the groovy language, but mostly any language will
work (Perl, shell/curl, Python, etc.).

8.3.1 Migrate Annotations

We provide a [migration script](https://github.com/gmod/apollo/tree/master/docs/web_services/examples/groovy/ mi-
grate_annotations1to2.groovy) that connects to a single Web Apollo 1 instance and populates the annotations for an
organism for a set of sequences / (confusingly called tracks as well). It would be best to develop your script on a
development instance of Apollo2 for restricted sequences.

To get the scripts working properly, you’ll need to provide the list of sequences (or tracks) to migrate for each organism.
You can get the list of tracks by either using the database (select * from tracks ;) or looking in the Web
Apollo annotations directory

ls -1 /opt/apollo/annotations/ | grep Annotations | grep -v history | paste -s -d"," -

8.3.2 Migrate Users

You have to add users de novo using something like the add_users.groovy script. In this case you create a csv file with
the email, name, password, and role (‘user’ or ‘admin’). This is passed into the add_users.groovy script and users are
added.

From Web Apollo 1, you should be able to pull user names out of the database select * from users ;, but
there is not much overlap between users in Web Apollo1.x and Apollo2.x.

If you have only a few users, however, just adding them manually on the users will likely be easier.
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8.3.3 Add Organisms

If possible adding organisms on the organisms tab is the easiest option if you only have a handful of organisms.

The [add_organism.groovy script](https://github.com/gmod/apollo/tree/master/docs/web_services/examples/groovy/
add_organism.groovy) can help automate this process if you have a large number of migrations to handle.
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CHAPTER 9

Permissions guide

9.1 Global

• admin: access to everything

• user: only guarantees a login with permissions configured on organism basis

9.2 Organism

Can only view things related to that organism.

• read: view / search only, no annotation

Annotations: lock detail / coding
RefSeq: hide export
Organism: hide
User: hide
Group: hide
Preferences: hide
JBrowse: disable UcA track

• export: same as read, but can use the export screen

RefSeq: show export

• write: same as above, but can add / edit annotations

Annotations: allow editing
JBrowse: enable UcA track

• admin: access to everything for that organism
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Organism: show
User: show
Group: show
Preferences: (still hide)

Table of permissions:

| Permission | Annotator | Users/groups | Annotations | Organism
→˓ |
|------------|--------------------|---------------|---------------------|-------------
→˓--------------|
| READ | visible / locked | hide | visible / no export | visible
→˓ |
| EXPORT | visible / locked | hide | visible / export | visible
→˓ |
| WRITE | visible + editable | hide | visible / export | visible
→˓ |
| ADMIN | visible + editable | visible | visible /export | visible +
→˓admin functions |
| NONE | not available | not available | not available | not visible
→˓ |

The Preference panel is available only for GLOBAL admin.
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CHAPTER 10

Automated testing architecture

The Apollo unit testing framework uses the grails testing guidelines extensively, which can be reviewed here:
http://grails.github.io/grails-doc/2.4.3/guide/testing.html

Our basic methodology is to run the full test suite with the apollo command:

apollo test

More specific tests can also be run for example by running specific commands for grails test-app

grails test-app :unit-test

This runs ALL of the tests in “test/unit”. If you want to test a specific function then write it something like this:

grails test-app org.bbop.apollo.FeatureService :unit

10.1 Notes about the test suites:

1. @Mock includes any domain objects you’ll use. Unit tests don’t use the database.

2. The setup() function is run for each test

3. The test is composed of blocks of code with when: and then:. You have to have both or it is not a test.

Example test:

@TestFor(FeatureService)
@Mock([Sequence,FeatureLocation,Feature])

class FeatureServiceSpec extends Specification {
void setup(){}
void "convert JSON to Feature Location"(){

when: "We have a valid json object"
JSONObject jsonObject = new JSONObject()
Sequence sequence = new Sequence(name: "Chr3",
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seqChunkSize: 20, start:1, end:100, length:99).save(failOnError: true)
jsonObject.put(FeatureStringEnum.FMIN.value,73)
jsonObject.put(FeatureStringEnum.FMAX.value,113)
jsonObject.put(FeatureStringEnum.STRAND.value, Strand.POSITIVE.value)

then: "We should return a valid FeatureLocation"
FeatureLocation featureLocation =
service.convertJSONToFeatureLocation(jsonObject,sequence)

assert featureLocation.sequence.name == "Chr3"
assert featureLocation.fmin == 73
assert featureLocation.fmax == 113
assert featureLocation.strand ==Strand.POSITIVE.value

} }

There are 3 “special” types of things to test, which are all important and reflect the grails special functions: Domains,
Controllers, Services. They will all be in the “test” directory and all be suffixed with “Spec” for a Spock test.

10.2 Chado

If you test with the chado export you will need to make sure you load ontologies into your chado database or integration
steps will fail. If you don’t specify chado in your apollo-config.groovy then no further action would be necessary.

./scripts/load_chado_schema.sh -u nathandunn -d apollo-chado-test -s chado-schema-
→˓with-ontologies.sql.gz -r
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CHAPTER 11

How to contribute code to Apollo

11.1 Audience

These guidelines are for developers of Apollo software, whether internal or in the broader community.

11.2 Basic principles of the Apollo-flavored GitHub Workflow

11.2.1 Principle 1: Work from a personal fork

• Prior to adopting the workflow, a developer will perform a one-time setup to create a personal Fork of apollo
and will subsequently perform their development and testing on a task-specific branch within their forked repo.
This forked repo will be associated with that developer’s GitHub account, and is distinct from the shared repo
managed by GMOD.

11.2.2 Principle 2: Commit to personal branches of that fork

• Changes will never be committed directly to the master branch on the shared repo. Rather, they will be composed
as branches within the developer’s forked repo, where the developer can iterate and refine their code prior to
submitting it for review.

11.2.3 Principle 3: Propose changes via pull request of personal branches

• Each set of changes will be developed as a task-specific branch in the developer’s forked repo, and then create
a pull request will be created to develop and propose changes to the shared repo. This mechanism provides a
way for developers to discuss, revise and ultimately merge changes from the forked repo into the shared Apollo
repo.
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11.2.4 Principle 4: Delete or ignore stale branches, but don’t recycle merged ones

• Once a pull request has been merged, the task-specific branch is no longer needed and may be deleted or ignored.
It is bad practice to reuse an existing branch once it has been merged. Instead, a subsequent branch and pull-
request cycle should begin when a developer switches to a different coding task.

• You may create a pull request in order to get feedback, but if you wish to continue working on the branch, so
state with “DO NOT MERGE YET”.

11.3 Table of contents

• One Time Setup - Forking a Shared Repo

– Step 1 - Backup your existing repo (optional)

– Step 2 - Fork apollo via the Web

– Step 3 - Clone the Fork Locally

– Step 4 - Configure the local forked repo

– Step 5 - Configure .bashrc to show current branch (optional)

• Typical Development Cycle

– Refresh and clean up local environment

* Step 1 - Fetch remotes

* Step 2 - Ensure that ‘master’ is up to date

– Create a new branch

– Changes, Commits and Pushes

– Reconcile branch with upstream changes

* Fetching the upstream branch

* Rebasing to avoid Conflicts and Merge Commits

* Dealing with merge conflicts during rebase

* Advanced: Interactive rebase

– Submitting a PR (pull request)

– Reviewing a pull request

– Respond to TravisCI tests

– Respond to peer review

– Repushing to a PR branch

– Merge a pull request

– Celebrate and get back to work

• GitHub Tricks and Tips

• References and Documentation
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11.4 One Time Setup - Forking a Shared Repo

The official shared Apollo repository is intended to be modified solely via pull requests that are reviewed and merged
by a set of responsible ‘gatekeeper’ developers within the Apollo development team. These pull requests are initially
created as task-specific named branches within a developer’s personal forked repo.

Typically, a developer will fork a shared repo once, which creates a personal copy of the repo that is associated with
the developer’s GitHub account. Subsequent pull requests are developed as branches within this personal forked repo.
The repo need never be forked again, although each pull request will be based upon a new named branch within this
forked repo.

11.4.1 Step 1 - Backup your existing repo (optional)

The Apollo team has recently adopted the workflow described in this document. Many developers will have an existing
clone of the shared repo that they have been using for development. This cloned local directory must be moved aside
so that a proper clone of the forked repo can be used instead.

If you do not have an existing local copy of the shared repo, then skip to Step 2 below.

11.4.2 Step 2 - Fork apollo via the Web

The easiest way to fork the apollo repository is via the GitHub web interface:

• Ensure you are logged into GitHub as your GitHub user.

• Navigate to the apollo shared repo at https://github.com/GMOD/apollo.

• Notice the ‘Fork’ button in the upper right corner. It has a number to the right of the button.

• Click the Fork button. The resulting behavior will depend upon whether your GitHub user is a member of a
GitHub organization. If not a member of an organization, then the fork operation will be performed and the
forked repo will be created in the user’s account.

• If your user is a member of an organization (e.g., GMOD or acme-incorporated),
then GitHub will present a dialog for the user to choose where to place the
forked repo. The user should click on the icon corresponding to their username.
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• If you accidentally click the number, you will be on the Network Graphs page and should go back.

11.4.3 Step 3 - Clone the Fork Locally

At this point, you will have a fork of the shared repo (e.g., apollo) stored within GitHub, but it is not yet available on
your local development machine. This is done as follows:

# Assumes that directory ~/MI/ will contain your Apollo repos.
# Assumes that your username is MarieCurie.
# Adapt these instructions to suit your environment
> cd ~/MI
> git clone git@github.com:MarieCurie/apollo.git
> cd apollo

Notice that we are using the SSH transport to clone this repo, rather than the HTTPS transport. The telltale indi-
cator of this is the git@github.com:MarieCurie... rather than the alternative https://github.com/
MarieCurie....

Note: If you encounter difficulties with the above git clone, you may need to associate your local public SSH key
with your GitHub account. See Which remote URL should I use? for information.

11.4.4 Step 4 - Configure the local forked repo

The git clone above copied the forked repo locally, and configured the symbolic name ‘origin’ to point back to
the remote GitHub fork. We will need to create an additional remote name to point back to the shared version of the
repo (the one that we forked in Step 2). The following should work:

# Assumes that you are already in the local apollo directory
> git remote add upstream https://github.com/GMOD/apollo.git

Verify that remotes are configured correctly by using the command git remote -v. The output should resemble:
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upstream https://github.com/GMOD/apollo.git (fetch)
upstream https://github.com/GMOD/apollo.git (push)
origin git@github.com:MarieCurie/apollo.git (fetch)
origin git@github.com:MarieCurie/apollo.git (push)

11.4.5 Step 5 - Configure .bashrc to show current branch (optional)

One of the important things when using Git is to know what branch your working directory is tracking. This can be
easily done with the git status command, but checking your branch periodically can get tedious. It is easy to
configure your bash environment so that your current git branch is always displayed in your bash prompt.

If you want to try this out, add the following to your ~/.bashrc file:

function parse_git_branch()
{

git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ \1/'
}
LIGHT_GRAYBG="\[\033[0;47m\]"
LIGHT_PURPLE="\[\033[0;35m\]"
NO_COLOR="\[\033[0m\]"
export PS1="$LIGHT_PURPLE\w$LIGHT_GRAYBG\$(parse_git_branch)$NO_COLOR \$ "

You will need to open up a new Terminal window (or re-login to your existing terminal) to see the effect of the above
.bashrc changes.

If you cd to a git working directory, the branch will be displayed in the prompt. For example:

~ $
~ $ # This isn't a git directory, so no branch is shown
~ $
~ $ cd /tmp
/tmp $
/tmp $ # This isn't a git directory, so no branch is shown
/tmp $
/tmp $ cd ~/MI/apollo/
~/MI/apollo fix-feedback-button $
~/MI/apollo fix-feedback-button $ # The current branch is shown
~/MI/apollo fix-feedback-button $
~/MI/apollo fix-feedback-button $ git status
On branch fix-feedback-button
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
... remaining output of git status elided ...

11.5 Typical Development Cycle

Once you have completed the One-time Setup above, then it will be possible to create new branches and pull requests
using the instructions below. The typical development cycle will have the following phases:

• Refresh and clean up local environment

• Create a new task-specific branch
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• Perform ordinary development work, periodically committing to the branch

• Prepare and submit a Pull Request (PR) that refers to the branch

• Participate in PR Review, possibly making changes and pushing new commits to the branch

• Celebrate when your PR is finally Merged into the shared repo.

• Move onto the next task and repeat this cycle

11.5.1 Refresh and clean up local environment

Git will not automatically sync your Forked repo with the original shared repo, and will not automatically update your
local copy of the Forked repo. These tasks are part of the developer’s normal cycle, and should be the first thing done
prior to beginning a new development effort and creating a new branch. In addition, this

Step 1 - Fetch remotes

In the (likely) event that the upstream repo (the apollo shared repo) has changed since the developer last began a task,
it is important to update the local copy of the upstream repo so that its changes can be incorporated into subsequent
development.

> git fetch upstream # Updates the local copy of shared repo BUT does not
→˓affect the working directory, it simply makes the upstream code available locally
→˓for subsequent Git operations. See step 2.

Step 2 - Ensure that ‘master’ is up to date

Assuming that new development begins with branch ‘master’ (a good practice), then we want to make sure our local
‘master’ has all the recent changes from ‘upstream’. This can be done as follows:

> git checkout master
> git reset --hard upstream/master

The above command is potentially dangerous if you are not paying attention, as it will remove any local commits to
master (which you should not have) as well as any changes to local files that are also in the upstream/master version
(which you should not have). In other words, the above command ensures a proper clean slate where your local master
branch is identical to the upstream master branch.

Some people advocate the use of git merge upstream/master or git rebase upstream/master in-
stead of the git reset --hard. One risk of these options is that unintended local changes accumulate in the
branch and end up in an eventual pull request. Basically, it leaves open the possibility that a developer is not really
branching from upstream/master, but is branching from some developer-specific branch point.

11.5.2 Create a new branch

Once you have updated the local copy of the master branch of your forked repo, you can create a named branch from
this copy and begin to work on your code and pull-request. This is done with:

> git checkout -b fix-feedback-button # This is an example name

This will create a local branch called ‘fix-feedback-button’ and will configure your working directory to track that
branch instead of ‘master’.
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You may now freely make modifications and improvements and these changes will be accumulated into the new branch
when you commit.

If you followed the instructions in Step 5 - Configure .bashrc to show current branch (optional), your shell prompt
should look something like this:

~/MI/apollo fix-feedback-button $

11.5.3 Changes, Commits and Pushes

Once you are in your working directory on a named branch, you make changes as normal. When you make a commit,
you will be committing to the named branch by default, and not to master.

You may wish to periodically git push your code to GitHub. Note the use of an explicit branch name that matches
the branch you are on (this may not be necessary; a git expert may know better):

> git push origin fix-feedback-button # This is an example name

Note that we are pushing to ‘origin’, which is our forked repo. We are definitely NOT pushing to the shared ‘upstream’
remote, for which we may not have permission to push.

11.5.4 Reconcile branch with upstream changes

If you have followed the instructions above at Refresh and clean up local environment, then your working directory
and task-specific branch will be based on a starting point from the latest-and-greatest version of the shared repo’s
master branch. Depending upon how long it takes you to develop your changes, and upon how much other developer
activity there is, it is possible that changes to the upstream master will conflict with changes in your branch.

So it is a good practice to periodically pull down these upstream changes and reconcile your task branch with the
upstream master branch. At the least, this should be performed prior to submitting a PR.

Fetching the upstream branch

The first step is to fetch the update upstream master branch down to your local development machine. Note that this
command will NOT affect your working directory, but will simply make the upstream master branch available in your
local Git environment.

> git fetch upstream

Rebasing to avoid Conflicts and Merge Commits

Now that you’ve fetched the upstream changes to your local Git environment, you will use the git rebase com-
mand to adjust your branch

> # Make that your changes are committed to your branch
> # before doing any rebase operations
> git status

# ... Review the git status output to ensure your changes are committed
# ... Also a good chance to double-check that you are on your
# ... task branch and not accidentally on master

> git rebase upstream/master
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The rebase command will have the effect of adjusting your commit history so that your task branch changes appear
to be based upon the most recently fetched master branch, rather than the older version of master you may have used
when you began your task branch.

By periodically rebasing in this way, you can ensure that your changes are in sync with the rest of Apollo development
and you can avoid hassles with merge conflicts during the PR process.

Dealing with merge conflicts during rebase

Sometimes conflicts happen where another developer has made changes and committed them to the upstream master
(ideally via a successful PR) and some of those changes overlap with the code you are working on in your branch. The
git rebase command will detect these conflicts and will give you an opportunity to fix them before continuing the
rebase operation. The Git instructions during rebase should be sufficient to understand what to do, but a very verbose
explanation can be found at Rebasing Step-by-Step

Advanced: Interactive rebase

As you gain more confidence in Git and this workflow, you may want to create PRs that are easier to review and best
reflect the intent of your code changes. One technique that is helpful is to use the interactive rebase capability of Git
to help you clean up your branch prior to submitting it as a PR. This is completely optional for novice Git users, but it
does produce a nicer shared commit history.

See squashing commits with rebase for a good explanation.

11.5.5 Submitting a PR (pull request)

Once you have developed code and are confident it is ready for review and final integration into the upstream version,
you will want to do a final git push origin ... (see Changes, Commits and Pushes above). Then you will use
the GitHub website to perform the operation of creating a Pull Request based upon the newly pushed branch.

See submitting a pull request.

11.5.6 Reviewing a pull request

The set of open PRs for the apollo can be viewed by first visiting the shared apollo GitHub page at https://github.com/
GMOD/apollo.

Click on the ‘Pull Requests’ link on the right-side of the page:

Note that the Pull Request you created from your forked repo shows up in the shared repo’s Pull Request list. One way
to avoid confusion is to think of the shared repo’s PR list as a queue of changes to be applied, pending their review
and approval.
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11.5.7 Respond to TravisCI tests

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its fi-
nal merge to the shared repo. After creating your Pull Request, the TravisCI tests for apollo will
be executed automatically, ensuring that the code that ‘worked fine’ on your development machine also
works in the production-like environment provided by TravisCI. The current status of the tests can
be found near the bottom of the individual PR page, to the right of the Merge Request symbol:

TBD - Something should be written about developers running tests PRIOR to TravisCI and the the PR. This may
already be in the README.html, but should be cited.

11.5.8 Respond to peer review

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its final merge to the
shared repo. After creating your Pull Request, the TravisCI tests for apollo will be executed automatically, ensuring
that the code that ‘worked fine’ on your development machine also works in the production-like environment provided
by TravisCI. The current status of the tests can be found

11.5.9 Repushing to a PR branch

It’s likely that after created a Pull Request, you will receive useful peer review or your TravisCI tests will have failed.
In either case, you will make the required changes on your development machine, retest your changes, and you can
then push your new changes back to your task branch and the PR will be automatically updated. This allows a PR to
evolve in response to feedback from peers. Once everyone is satisfied, the PR may be merged. (see below).

11.5.10 Merge a pull request

One of the goals behind the workflow described here is to enable a large group of developers to meaningfully contribute
to the Apollo codebase. The Pull Request mechanism encourages review and refinement of the proposed code changes.
As a matter of informal policy, Apollo expects that a PR will not be merged by its author and that a PR will not be
merged without at least one reviewer approving it (via a comment such as +1 in the PR’s Comment section).
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11.5.11 Celebrate and get back to work

You have successfully gotten your code improvements into the shared repository. Congratulations! The branch you
created for this PR is no longer useful, and may be deleted from your forked repo or may be kept. But in no case should
the branch be further developed or reused once it has been successfully merge. Subsequent development should be on
a new branch. Prepare for your next work by returning to Refresh and clean up local environment.

11.6 GitHub Tricks and Tips

• Add ?w=1 to a GitHub file compare URL to ignore whitespace differences.

11.7 References and Documentation

• The instructions presented here are derived from several sources. However, a very readable and complete article
is Using the Fork-and-Branch Git Workflow. Note that the article doesn’t make clear that certain steps like
Forking are one-time setup steps, after which Branch-PullRequest-Merge steps are used; the instructions below
will attempt to clarify this.

• New to GitHub? The GitHub Guides are a great place to start.

• Advanced GitHub users might want to check out the GitHub Cheat Sheet
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CHAPTER 12

Architecture notes

12.1 Overview and quick-start

See the build doc for the official quick-start guide.

Minimally, the apollo application can be launched by running apollo run-local. This starts up a temporary
tomcat server automatically. It will also simply use a in-memory H2 database if a different database configuration
isn’t setup yet.

For development purposes, you can also enable automatic code reloading which helps for fast iteration.

• grails -reloading run-app will allow changes to the server side code to be auto-reloaded.

• ant devmode will provide auto-reloading of GWT code changes

• scripts/copy_client.shwill copy the plugin code to the web-apps folder to update the plugin javascript

The apollo script automatically does several of these functions.

Note: Changes to domain/database objects will require an application restart, but, a very cool feature of our application
is that the whole database doesn’t need reloading after a database change.

If you look at the apollo binary, you’ll see that the code for grails run-app and others are automatically
launched during apollo run-local.

Also, as always during web development, yoe will want to clear the cache to see changes (“shift-reload” on most
browsers).
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12.2 Overview

PDF schema

The main components of the Apollo 2.x application are:

• Grails 2 Server with the current version set in the application.properties
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• Datastore: configured via Hibernate / Grails whcih can use most anything supported by JDBC / hibernate (pri-
marily, Postgres, MySQL, H2)

• JBrowse / Apollo Plugin: JS / HTML5 JBrowse doc and main site

• GWT client: provides the sidebar. Can be written in another front-end language, as well. GWT doc

12.3 Basic layout

• Grails code is in normal grails directories under “grails-app”

• GWT-only code is under “src/gwt”

– Code shared between the client and the server is under “src/gwt/org/bbop/apollo/gwt/shared”

• Client code is under “client” (still)

• Tests are under “test”

• Old (presumably inactive code) is under “src/main/webapp”

• New source (loaded into VM) is under “src/java” or “src/groovy” except for grails specific code.

• Web code (not much) is either under “web-app” (and where jbrowse is copied) or under “grails-app/assets”
(these are compiled down).

• GWT-specifc CSS can also be found in: “src/gwt/org/bbop/apollo/gwt/client/resources/” but it inherits the CSS
on its current page, as well.

12.3.1 Main components

The main components of the Apollo 2.x application (the four most important are 1 through 4):

1. The domain classes; these are the main objects

2. Controllers, which route those domains and provide URL routes; provides rest services

3. Views: annotator and index and the only ones that matter for Apollo

4. Services: very important because all of the controllers should typically have routes, then particular business
logic should go into the service.

5. Configuration files: The grails-app/conf folder contains central conf files, but the apollo-config.groovy file in
your root directory can override these central configs (i.e. it is not necessary to edit DataSource.groovy)

6. Grails-app/assets: all your javascript live here. efficient way to deliver this stuff

7. Resources: web-app directory: css, images, and the jbrowse directory + WA plugin are initialized here.

8. Client directory: The WA plugin is copied or compiled along with jbrowse to the web-app directory

12.4 Schema/domain classes

Domain classes: the most important domain class everywhere is the Feature; it is the key to everything that we do.
The way a domain class is built:

The domain classes represent a database table. The way it works with “Feature”, which is inherited by many other
classes, is that all features are stored in the same table, the difference is that in SQL, there is a class table and when
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it pulls these tables from the database — it queries it and then converts it into the right class. There are a number of
constrains you can set.

Very important: the hasMany maps the one-to-many relationship within the database. It can have many locations.
the parentFeatureRelationships is where you map this one-to-many relationship. You also have to have a single item
relationship.

You can add extra methods to the domain objects, but this is generally not necessary.

Note: In the DataStore configuration, setting called “auditable = true” means that a new table, a feature auditing tool,
is keeping track of history for the specified objects

12.4.1 Feature class

All features inherit an ontologyId and specify a cvTerm, although CvTerms are being phased out.

Subclasses of “Feature” will specify the ontologyId, but “Feature” itself is too generic, for example, so it does not
have an ontologyId.

12.4.2 Sequence class

Sequences are the method for WA to grabs sequences used to have a cache built-in mechanism doesn’t want to have
that anymore to avoid running into memory problems.

12.4.3 Feature locations

Features such as genes all have a feature location belongs to a particular sequence. If you have a feature with sub-
classes, it can exist within many locations, and each location belongs to its own sequence.

12.4.4 Feature relationship

Feature relationships can define parent/child relationships as well as SO terms i.e. SO “part_of” relationships

12.4.5 Feature enums

The FeatureString enum: allows for mapping names for concepts, and it is useful to use these enums without worrying
about string mappings inside the application.

12.5 Running the application

If you go through and run this grails application when you send the URL request, then methods that are sent through
the AnnotationEditorController (formerly called AnnotationEditorService) dynamically calls a method using handle-
Operation.

The AnnotatorController serves the page that the annotator is on. This doesn’t map to a particular domain object.

In most cases when we have these methods, it unwraps the data that is sent through into JSON object as a set of
variables. Then it is processed into java objects and routed back to JSON to send back.

When annotator creates a transcript, it is then released to requestHandlingService and it sends it to an annotation event,
which sends it to a WebSocket, and it’s then broadcasted to everyone.
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12.5.1 Websockets and listeners

All clients subscribe to AnnotationNotifications for new transcripts and events.

If an add_transcript operation occurs, this is broadcasted via the websocket. The server side broadcasts this event, and
then it does a JSON roundtrip to render the results and sends the return object that belongs to an AnnotationEvent.

Procedure transcript is created –> goes to the server –> adds a transcript locally –> announces it to everyone.

We used to use long polling request model for “push notifications” but now we use Spring with the SockJS, which
uses websockets but it can fall back to long-polling.

There is another component of the broadcasting called brokerMessagingTemplate is the converter to broadcast the
event

12.5.2 Controllers

Grails controllers are a fairly easy concept for “routing” URLs and info to methods in the code.

12.5.3 Services

Grails services are classes that perform business logic. (In IntelliJ, these are indicated by green buttons on the defini-
tions to show that these are Injected Spring Bean classes)

The word @Transactional means that every operation that is not private is handled via a transaction. In the old model
there were a lot of files that were recreated each time, even though they did the same. Now we define a class and
can use it again and again. And there can be transactions within transaction. I could also call other services within
services.

addTranscript generateTranscript

The different services do exactly what their name implies. It may not always be clear in what particular service each
class should be in, but it can be changed later. It is easy also to make changes to the names as well.

Grails views

• Most of Views are under grails-app

– everything conforms to the MVC backend model for the Grails application.

• Most of java, css, html is under web-app directory

– Application logic for groovy, gwt, java, etc live here. we could put our old servlets there, but not recom-
mended.

12.6 Main configuration

The central configuration files are defined in grails-app/conf/ folder, however the user normally only edits their personal
config in apollo-config.groovy. That is because the user config file will override those in the central configuration. See
Configure.html for details.
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12.6.1 Database configuration

The “root” database configuration is specified by grails-app/conf/DataSource.groovy but it is generally over-ridden by
the user’s apollo-config.groovy

It is recommended that the user takes sample-postgres-apollo-config.groovy or sample-mysql-apollo-config.groovy
and copies it to apollo-config.groovy for their application.

The default database driver is the h2 database, which is an “embedded” database that doesn’t require installing postgres
or mysql, but it is not generally seen as performant as postgres or mysql though.

Note: there are three environments that can be setup: a development environment, a test environment, and a production
environment, and these are basically assigned automatically depending on how you deploy the app.

• Development environment - “apollo run-local” or “apollo debug”

• Test environment - “apollo test”

• Production environment - “apollo deploy” or “apollo release”

Note: If there are no users and no annotations, a bootstrap procedure can also automatically create some annotations
and users to start up the app so there is something in there to begin with.

12.6.2 UrlMapping configuration:

The UrlMappings are stored in grails-app/conf/UrlMappings.groovy

The UrlMappings sets up a mapping from routes to controllers

Standard and customized mappings go in here. The way we route jbrowse to organism data directories is also con-
trolled here. The organismJBrowseDirectory is set for a particular session, per user. If none specified, it brings up a
default one.

12.6.3 Build configuration

The build configuration is stored in grails-app/conf/BuildConfig.groovy

If there are libraries that are missing are are to be added, you can add them here.

Additionally, the build system uses the “apollo” script and the “build.xml” to control the compilation and resource
steps.

12.6.4 Central config

The central configuration is stored in grails-app/conf/Config.groovy

The central Grails config contains logging, app config, and also can reference external configs. The external config
can override settings without even touching the application code using this method

In our application, we use the apollo-config.groovy then everything in there supersedes this file.

The log4j area can enable logging levels. You can turn on the “debug grails.app” to output all the webapollo debug
info, or also set the “grails.debug” environment variable for java too.

There is also some Apollo configuration here, and it is mostly covered by the configuration section.
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12.7 GWT web-app

When GWT compiles, it loads files into the web-app directory. When it loads up annotator, it goes to anno-
tator index (the way things get loaded) it does an include annotator.nocache.js file, and with that, it includes
all GWT stuff for the /annotator/index route. The src/gwt/org/bbop/apollo/gwt/ contains much code and the
src/gwt/org/bbop/apollo/gwt/Annotator.gwt.xml is a central config file for the GWT web-app.

12.7.1 User interface definitions

A Bootstrap/GWT interface handles the tabs on the right for the new UI. The annotator object is at the root of every-
thing.

Example definition: MainPanel.ui.xml

12.8 Tests

12.8.1 Unit tests

Unit tests and some basic javascript tests are running on Travis-CI (see .travis.yml for example script).

You can also run “apollo test” to run the tests locally. It will use the “test” database configuration automatically.

Also see the testing notes for more details.
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CHAPTER 13

Command line tools

The command line tools offer a number of interesting features that can be used to help setup and retrieve data from the
application.

13.1 Overview

The command line tools are located in docs/web_services/examples, and they are mostly small scripts that automate
the usage of the the web services API.

13.1.1 get_gff3.groovy

Example:

get_gff3.groovy -organism Amel_4.5 -username admin@webapollo.com \
-password admin_password -url http://localhost:8080/apollo > my output.gff3

This command can accept an -output argument to output to file, or the stdout can be redirected.

The -username and -password can be specified via the command line or if omitted, the user will be prompted.

13.1.2 get_fasta.groovy

Example:

get_fasta.groovy -organism Amel_4.5 -username admin@webapollo.com \
-password admin_password -seqtype cds/cdna/peptide -url http://localhost:8080/

→˓apollo > output.fa

This command can accept an -output argument to output to file, or the stdout can be redirected.

The -username and -password can be specified via the command line (similar to get_gff3.groovy) or if omitted,
the user will be prompted.
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13.1.3 add_users.groovy

Example:

add_users.groovy -username admin@webapollo.com -password admin_password \
-newuser newuser@test.com -newpassword newuserpass \
-destinationurl http://localhost:8080/apollo

The -username and -password refer to the admin user, and they can also be specified via stdin instead of the command
line if they are omitted.

A list of users specified in a csv file can also be used as input.

13.1.4 add_organism.groovy

Example:

add_organism.groovy -name yeast -url http://localhost:8080/apollo/ \
-directory /opt/apollo/yeast -username admin@webapollo.com -password admin_

→˓password

The -directory refers to the jbrowse data directory containing the output from prepare-refseqs.pl, flatfile-to-json.pl, etc.
The -blatdb is optional, -genus, and -species are optional.

The -username and -password refer to the admin user, and they can also be specified via stdin instead of the command
line if they are omitted.

13.1.5 delete_annotations_from_organism.groovy

Example:

docs/web_services/examples/groovy/delete_annotations_from_organism.groovy -
→˓destinationurl http://localhost:8080/apollo\

-organismname honeybee2

This script will delete any annotations associated with a given organism.
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CHAPTER 14

Web Service API

The Apollo Web Service API is a JSON-based REST API to interact with the annotations and other services of Apollo.
Both the request and response JSON objects can contain feature information that are based on the Chado schema. We
use the web services API scripting examples and we also use them in the Apollo JBrowse plugin.

The most up to date Web Service API documentation is deployed from the source code rest-api-doc annotations.

See http://icebox.lbl.gov/Apollo2/jbrowse/web_services/api for details

14.1 What is the Web Service API?

For a given Apollo server url (e.g., https://localhost:8080/apollo or any other Apollo site on the web),
the Web Service API allows us to make requests to the various “controllers” of the application and perform operations.

The controllers that are available for Apollo include the AnnotationEditorController, the OrganismController, the
IOServiceController for downloads of data, and the UserController for user management.

Most API requests will take:

• The proper url (e.g., to get features from the AnnotationEditorController, we can send requests to (e.g http:/
/localhost/apollo/annotationEditor/getFeatures)

• username - an authorized user (also uses session if none specified)

• password - password (also uses session if none specified)

• organism - (if applicable) the “common name” of the organism for the operation – will also pull from the “user
preferences” if none is specified.

• track/sequence - (if applicable) reference sequence name (shown in sequence panel / genomic browse)

• uniquename - (if applicable) the uniquename is a UUID used to guarantee a unique ID
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14.1.1 Errors If an error has occurred, a proper HTTP error code (most likely 400 or
500) and an error message. is

returned, in JSON format:

{ "error": "error message" }

14.1.2 Additional Notes

If you are sending password you care about over the wire (even if not using web services) it is highly recommended
that you use https (which adds encryption ssl) instead of http.

Examples are provided in the docs/web_services/examples/groovy/ directory for using SSL and optionally ignoring
certificates.

14.1.3 Example

curl -b cookies.txt -c cookies.txt -e "http://localhost:8080" \
-H "Content-Type:application/json" \
-d "{'username': 'demo', 'password': 'demo'}" \
"http://localhost:8080/apollo/Login?operation=login"

Login expects two parameters: username and password, and optionally rememberMe for a persistent cookie.

A successful login returns a empty JSON object

14.1.4 Cookies

The Apollo Login creates a JSESSIONID cookie and rememberMe cookie (if applicable) and these can be used in
downstream API requests (for example, by setting -b cookies.txt in curl will preserve the cookie in the request).

You can also pass username/password to individual API requests and these will authenticate each individual request.

14.1.5 Representing features in JSON

Most requests and responses will contain an array of feature JSON objects named features. The feature
object is based on the Chado feature, featureloc, cv, and cvterm tables.

{
"residues": "$residues",
"type": {

"cv": {
"name": "$cv_name"

},
"name": "$cv_term"

},
"location": {

"fmax": $rightmost_intrabase_coordinate_of_feature,
"fmin": $leftmost_intrabase_coordinate_of_feature,
"strand": $strand

},
"uniquename": "$feature_unique_name"
"children": [$array_of_child_features]
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"properties": [$array_of_properties]
}

where:

• residues - A sequence of alphabetic characters representing biological residues (nucleic acids, amino acids)
[string]

• type.cv.name - The name of the ontology [string] type.name - The name for the cvterm [string]

• location.fmax - The rightmost/maximal intrabase boundary in the linear range [integer]

• location.fmin - The leftmost/minimal intrabase boundary in the linear range [integer]

• strand - The orientation/directionality of the location. Should be 0, -1 or +1 [integer]

• uniquename - The unique name for a feature [string]

• children - Array of child feature objects [array]

• properties - Array of properties (including frameshifts for transcripts) [array]

Note that different operations will require different fields to be set (which will be elaborated upon in each operation
section).

14.2 Web Services API

The most up to date Web Service API documentation is deployed from the source code rest-api-doc annotations

See http://icebox.lbl.gov/Apollo2/jbrowse/web_services/api for details
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CHAPTER 15

Example Build Script on Unix with MySQL

This is an example build script. It may NOT be appropriate for your environment but does demonstrate what a typical
build process might look like on a Unix system using MySQL.

Please consult our Setup and Configuration documentation for additional information.

# Install prereqs
apt-get install tomcat8 git ant openjdk-7-jdk nodejs
# Upped tomcat memory per Apollo devs instructions:
echo "export CATALINA_OPTS="-Xms512m -Xmx1g \

-XX:+CMSClassUnloadingEnabled \
-XX:+CMSPermGenSweepingEnabled \
-XX:+UseConcMarkSweepGC \
-XX:MaxPermSize=256m" >> /etc/default/tomcat8

# Download and extract their tarball
npm install -g bower
wget https://github.com/GMOD/Apollo/archive/2.0.4.tar.gz
mv 2.0.4.tar.gz Apollo-2.0.4.tar.gz
tar xf Apollo-2.0.4.tar.gz
# Setup apollo mysql user and database
CREATE USER 'apollo'@'localhost' IDENTIFIED BY 'THE_PASSWORD';
CREATE DATABASE `apollo-production`;
GRANT ALL PRIVILEGES ON `apollo-production`.* To 'apollo'@'localhost' IDENTIFIED BY
→˓'THE_PASSWORD';
# Configure apollo for mysql.
cd ~/src/Apollo-2.0.4
# Let's store the config file outside of the source tree.
mkdir ~/apollo.config
# Copy the template
cp sample-mysql-apollo-config.groovy ~/apollo.config/apollo-config.groovy
ln -s ~/apollo.config/apollo-config.groovy
# For now, turn off tomcat8 so that we can see if the locally-run version works
→˓service tomcat8 stop
# Run the local version, which verifies install reqs, and does a bunch of stuff (see
→˓below)
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cd Apollo-2.0.4
./apollo run-local

# Some of what the Apollo installer does:
# Clones a bunch of git submodules into apollo-2.0.4/src
# Does a bunch of java compiling.
# Downloads and installs grails for you here: $HOME/.grails .
# Installs perl modules here: $HOME/.cpanm
# Installs java stuff here: $HOME/.java and $HOME/.m2

# If a pre-installed instance:
rm -rf /var/lib/tomcat/webapps/apollo
rm -f /var/lib/tomcat/webapps/apollo.war
# Startup tomcat again
service tomcat8 start

# ... with javascript minimization:
./apollo release
# ... without javascript minimization
# ./apollo deploy
# Above creates this file: target/apollo-2.0.4.war
sudo cp target/apollo-2.0.4.war /var/lib/tomcat/webapps/apollo.war

# Prepare JBrowse data
# Add the FASTA assembly
~/src/Apollo-2.0.4/bin/prepare-refseqs.pl \
--fasta /research/dre/assembly/assembly1.fasta.gz \
--out ~/organisms/dre

# Add annotations
~/src/Apollo-2.0.4/bin/flatfile-to-json.pl \
--gff /research/dre/annotation/FINAL_annotations/ssc_v4.gff \
--type mRNA --trackLabel Annotations --out ~/organisms/dre

# In interface point to directory ~/organisms/dre
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